23.02.2022 12:55 |

Autonomes Fahren

Grazer KI macht Radar robuster gegenüber Störungen

Damit Fahrassistenz- und Sicherheitssysteme moderner Autos ihre Umgebung wahrnehmen und zuverlässig funktionieren, sind sie auf Sensoren wie Kameras, Lidar, Ultraschall und Radar angewiesen. Vor allem letztere sind ein unverzichtbarer Bestandteil: Sie versorgen das Fahrzeug mit Standort- und Geschwindigkeitsinformationen von umliegenden Objekten. Doch Stör- und Umwelteinflüsse wie Interferenzen mit anderen Radargeräten oder auch extreme Witterungsbedingungen können die Qualität der Radarmessung negativ beeinflussen. Forschern der TU Graz ist nun zusammen mit Infineon ein Durchbruch beim Filtern dieser Störeinflüsse gelungen. Die mithilfe einer künstlichen Intelligenz erzielten Ergebnisse übertreffen den aktuellen Stand der Technik „bei Weitem“.

Artikel teilen
Drucken
Kommentare
0

„Je besser das Entrauschen von Störsignalen funktioniert, desto zuverlässiger kann die Position und die Geschwindigkeit von Objekten bestimmt werden“, erklärte Franz Pernkopf vom Institut für Signalverarbeitung und Sprachkommunikation. Zusammen mit seinem Team entwickelte er eine künstliche Intelligenz, die auf sogenannten gefalteten neuronalen Netzwerken (Convolutional Neural Networks, kurz: CNNs) beruht und gegenseitige Interferenzen von Radarsignalen abschwächt.

„Diese Architekturen sind der Schichtenhierarchie unseres visuellen Kortex nachempfunden und werden bereits erfolgreich in der Bild- und Signalverarbeitung eingesetzt“, so Pernkopf. CNNs filtern visuelle Informationen, erkennen Zusammenhänge und vervollständigen das Bild anhand vertrauter Muster. Sie verbrauchen durch ihren Aufbau wesentlich weniger Speicherplatz als andere neuronale Netzwerke, sprengen aber trotzdem die verfügbaren Kapazitäten von Radarsensoren für autonomes Fahren, wie die TU Graz in einer Aussendung erklärt.

KI entfernt Störsignale fast gänzlich
Das Ziel lautete also noch effizienter werden. Das Team trainierte daher verschiedene dieser neuronalen Netzwerke mit verrauschten Daten und gewünschten Ausgangswerten, suchte die kleinsten und schnellsten Modellarchitekturen heraus und komprimierte diese noch weiter. Das Resultat war ein KI-Modell mit hoher Filterleistung bei gleichzeitig geringem Energieverbrauch. Die Entrauschungsergebnisse mit einem F1-Score (Maß für die Genauigkeit eines Tests, Anm.) von 89 Prozent entsprechen beinahe einer Objekterkennungsrate von ungestörten Radarsignalen. Die Störsignale werden also beinahe gänzlich aus dem Messsignal entfernt, fassten die Forscher zusammen.

Deutlich geringerer Speicherplatzbedarf
Das Modell erreicht - in Zahlen ausgedrückt - mit einer Bitbreite von acht Bit die gleiche Performance wie vergleichbare Modelle mit einer Bitbreite von 32 Bit, benötigt aber lediglich 218 Kilobytes Speicherplatz. Das entspricht einer Speicherplatzreduktion von 75 Prozent, womit das Modell den derzeitigen Stand der Technik bei Weitem übertreffe.

System soll weiter verbessert werden
In den kommenden Jahren sollen die Ergebnisse nun weiter optimiert werden. Pernkopf: „Wir wollen das Modell nun derart verbessern, dass es auch dann noch funktioniert, wenn das Eingangssignal signifikant von gelernten Mustern abweicht.“ Das würde Radarsensoren um ein Vielfaches robuster gegen Störungen aus der Umgebung machen. „Bisher reichten schon kleinste Veränderungen der Messdaten aus, dass der Output zusammenbrach und Objekte nicht oder falsch erkannt wurden, was im Anwendungsfall autonomes Fahren verheerend wäre“, so Pernkopf.

 krone.at
krone.at
Kommentare
Eingeloggt als 
Nicht der richtige User? Logout

Willkommen in unserer Community! Eingehende Beiträge werden geprüft und anschließend veröffentlicht. Bitte achten Sie auf Einhaltung unserer Netiquette und AGB. Für ausführliche Diskussionen steht Ihnen ebenso das krone.at-Forum zur Verfügung.

User-Beiträge geben nicht notwendigerweise die Meinung des Betreibers/der Redaktion bzw. von Krone Multimedia (KMM) wieder. In diesem Sinne distanziert sich die Redaktion/der Betreiber von den Inhalten in diesem Diskussionsforum. KMM behält sich insbesondere vor, gegen geltendes Recht verstoßende, den guten Sitten oder der Netiquette widersprechende bzw. dem Ansehen von KMM zuwiderlaufende Beiträge zu löschen, diesbezüglichen Schadenersatz gegenüber dem betreffenden User geltend zu machen, die Nutzer-Daten zu Zwecken der Rechtsverfolgung zu verwenden und strafrechtlich relevante Beiträge zur Anzeige zu bringen (siehe auch AGB).

Sonntag, 22. Mai 2022
Wetter Symbol