08.09.2020 09:35 |

Studie aus Linz:

Neurotiker erhalten von KI bessere Musikvorschläge

Bei der Liedauswahl auf Musikplattformen unterstützen den User oft Algorithmen. Dabei kommen Systeme Künstlicher Intelligenz (KI) zum Einsatz, die anhand menschlicher Entscheidungen trainiert werden. Linzer Forscher zeigen nun, dass die Algorithmen Menschen, die als emotional labil eingeordnet werden, passendere und „bessere“ Vorschläge liefern. Das liegt daran, dass die Systeme diese leichter lesen können.

Der Frage, welche Verzerrungen zustande kommen können, wenn Algorithmen mehr oder weniger menschliche Entscheidungen übernehmen, gehen Wissenschaftler seit einiger Zeit auf vielfältige Weise nach. Die Forscher um Markus Schedl, Leiter der „Human-centered AI Gruppe“ am „LIT AI Lab“ der Universität Linz, haben in der Vergangenheit bereits gezeigt, dass das Lernen der Systeme anhand von Daten, die von Menschen stammen, oft zu Vorurteilen führt. So etwa, wenn diese Ergebnisse liefern, die sexistisch verzerrt sind.

Viele Streaming-Dienste haben KI-Empfehlungen
Auch mit der Verbesserung von Online-Empfehlungssystemen hat sich das Team bereits mehrfach beschäftigt. Solche Systeme nutzen alle größeren Plattformen im Film- oder Musikbereich wie Amazon, Netflix, Spotify, YouTube und andere. Nun gingen die Wissenschaftler zusammen mit Kollegen der Uni Innsbruck in einer Studie der Frage nach, ob die Ausprägung der Persönlichkeitsmerkmale von Nutzern von Musikstreamingplattformen einen Einfluss darauf hat, wie gut die Vorschläge zu den Personen passen.

Bei der Annäherung an die Persönlichkeiten der User orientierten sich Schedl und sein Team an den in der Psychologie gut untersuchten fünf breiten Persönlichkeitsmerkmalen „Offenheit für Erfahrungen“, „Gewissenhaftigkeit“, „Extraversion“, „Verträglichkeit“ und „Neurotizismus“, letzterer wird auch als emotionale Labilität bezeichnet. Welche dieser Merkmale bei den Personen in welcher Stärke ausgeprägt sind, schätzten sie anhand ihrer Datenspuren auf Twitter ab. Man nutzte hier eine Methode, die die verwendeten Worte in den Tweets analysiert und daraus „die Persönlichkeitsmerkmale ableitet“, so Schedl.

Daten zu Hörgewohnheiten aus Spotify & Co
Für die Untersuchung der Mechanismen hinter den Musikempfehlungen zogen sie Daten zu Hörgewohnheiten von Musikplattformen, wie Spotify oder Last.fm, und Hinweise auf Vorlieben aus den Tweets heran. Auf diese Weise bildeten die Wissenschaftler aus rund 18.000 Usern zehn Nutzergruppen (mit jeweils einem stärker oder schwächer ausgeprägten dominanten Persönlichkeitsmerkmal) und sahen sich an, wie Algorithmen in Empfehlungssystemen sie jeweils behandeln. Dazu geben sie einen Teil der gesammelten Daten den KI-Systemen zum Trainieren „und sagen den anderen Teil der Daten vorher“, so Schedl. So stelle man sicher, dass die Ergebnisse möglichst nahe an der Realität sind.

Danach maßen die Wissenschaftler mit gängigen Methoden, wie „passend und gut gereiht die jeweiligen Empfehlungen für die jeweilige Benutzergruppe ist“. Für die Forscher fielen diese Ergebnisse überraschend unterschiedlich aus: „Es sieht so aus, dass neurotischere Menschen unabhängig vom eingesetzten Algorithmus sehr deutlich bessere Ergebnisse bekommen als weniger neurotische“, sagte Schedl. Personen, die offen für neue Erfahrungen sind, erhalten hingegen weniger passende Vorschläge als sehr verschlossene Personen.

Eingeschränkter Geschmack hilft Algorithmen
„Das spricht dafür, dass es eben leichter ist, Empfehlungen zu geben, wenn der Benutzer einen eher eingeschränkten Musikgeschmack hat. Hört eine Person zum Beispiel nur ‘Viking-Metal‘, ist es relativ einfach, hier gute Empfehlungen zu geben“, sagte Schedl. Die näheren Analysen zeigten auch, dass Personen mit ausgeprägterem Neurotizismus ebenfalls zu einem engeren Musikgeschmack neigen, was es den Algorithmen insgesamt einfacher mache.

Diese Ergebnisse seien sehr wahrscheinlich auch auf andere Bereiche übertragbar, wie etwa auf automatisch angezeigte Job-, Reise- oder Partnervorschläge. Um also zu verhindern, dass solche Personen besonders stark in den viel beschworenen Echokammern verharren, sollten Anbieter auch gezielt Empfehlungen für andere Gruppen einstreuen, um die Verzerrung durch den Algorithmus geringer zu halten und den Nutzern auch andere „Welten zu eröffnen“, so der Forscher, der die Studie auf dem wichtigsten einschlägigen Fachtreffen, der „ACM Recommender Systems Conference“ im September vorstellt.

 krone.at
krone.at
Kommentare
Eingeloggt als 
Nicht der richtige User? Logout

Willkommen in unserer Community! Eingehende Beiträge werden geprüft und anschließend veröffentlicht. Bitte achten Sie auf Einhaltung unserer Netiquette und AGB. Für ausführliche Diskussionen steht Ihnen ebenso das krone.at-Forum zur Verfügung.

User-Beiträge geben nicht notwendigerweise die Meinung des Betreibers/der Redaktion bzw. von Krone Multimedia (KMM) wieder. In diesem Sinne distanziert sich die Redaktion/der Betreiber von den Inhalten in diesem Diskussionsforum. KMM behält sich insbesondere vor, gegen geltendes Recht verstoßende, den guten Sitten oder der Netiquette widersprechende bzw. dem Ansehen von KMM zuwiderlaufende Beiträge zu löschen, diesbezüglichen Schadenersatz gegenüber dem betreffenden User geltend zu machen, die Nutzer-Daten zu Zwecken der Rechtsverfolgung zu verwenden und strafrechtlich relevante Beiträge zur Anzeige zu bringen (siehe auch AGB).

Sonntag, 17. Oktober 2021
Wetter Symbol