Rechner der Zukunft

TU Wien entwickelt Quantenspeicher mit Diamanten

Elektronik
10.08.2011 10:19
Quantencomputer gehörten seit Jahren zu den großen Zielen der Wissenschaft. Einen wesentlichen Schritt in Richtung der Entwicklung eines ebensolchen könnten nun Diamanten bringen. An der TU Wien gelang es, Mikrowellen an Quantenzustände eines Diamanten anzukoppeln. Die Ergebnisse dieses Forschungsprojektes wurden nun im angesehenen Fachjournal "Physical Review Letters" veröffentlicht.

Wenn ein gewöhnlicher Computer eine Liste von Aufgaben zu erledigen hat, muss er sie mühsam nacheinander abarbeiten. Ein Quantencomputer könnte verschiedene Zustände gleichzeitig einnehmen - und dadurch verschiedene mögliche Lösungen eines Problems gleichzeitig ausprobieren.

Schon lange sucht man nach passenden physikalischen Bausteinen für einen Quantencomputer - bisher jedoch ohne den gewünschten Erfolg. Zwar gab es schon verschiedene Ideen für Systeme, die auf quantenphysikalische Weise Information speichern, doch meist sind sie sehr fragil und instabil. Wenn etwas als Bauelement für einen Computer dienen soll, dann muss es sehr rasch umschalten lassen. Gleichzeitig muss es einen quantenphysikalischen Zustand ausreichend lange zuverlässig konservieren können, sodass genug Zeit besteht, um damit Rechnungen durchzuführen. "Es gibt kein Quantensystem, das alle Anforderungen gleichzeitig erfüllt", meint Johannes Majer vom Atominstitut der TU Wien. Mit seinem Forschungsteam koppelte er daher zwei völlig verschiedene Quantensysteme, um die Vorteile beider Seiten nutzen zu können: Mikrowellen und Diamanten.

Lichtteilchen und Diamanten
Auch bei herkömmlichen Computern gibt es einen Prozessor und einen Arbeitsspeicher. Der Prozessor führt schnelle Rechnungen durch, der Speicher soll sich die Ergebnisse möglichst dauerhaft merken. Ähnlich verhalten sich die beiden Quantensysteme zueinander, die auf dem Quantenchip an der TU Wien nun vereint wurden: Schnelle Rechenoperationen werden durch einen sogenannten Mikrowellen-Resonator ermöglicht. Sein Quantenzustand wird durch Lichtteilchen im Mikrowellen-Bereich bestimmt. Dieser Mikrowellen-Resonator wird an eine dünne Diamantschicht angekoppelt, in der Quantenzustände gespeichert werden können.

Fehlerhafte Edelsteine sind erwünscht
Während man für wertvollen Schmuck möglichst reine, makellose Diamanten sucht, benötigt man für die Quantenexperimente genau das Gegenteil: Hier sind Diamanten mit Fehlern gefragt. Wenn sich im regelmäßigen Kohlenstoff-Gitter des Diamanten nämlich Stickstoff-Atome einschleichen, dann wird der Diamant zwar beinahe schwarz, doch dafür kann er dann Quantenzustände stabil speichern. "Wir konnten zeigen, dass sich in unserem Chip Quantenzustände zwischen Mikrowellen und den Stickstoff-Zentren im Diamanten übertragen lassen", erklärt der TU-Assistent Robert Amsüss. Je mehr Stickstoffatome bei dieser Übertragung beteiligt sind, umso stabiler "merkt" sich der Diamant den eingespeicherten Quantenzustand.

Überraschenderweise konnte bei dem Experiment auch gezeigt werden, sich sogar im Drehimpuls der Atomkerne Quantenzustände speichern lassen. "Das könnte der erste Schritt zu einem Atomkern-Speicher sein", mutmaßt Johannes Majer - doch zunächst soll der Diamant-Quantenchip in seiner jetzigen Form weiterentwickelt werden. Die nötigen Teilelemente sind nun vorhanden - jetzt geht es darum, sie für echte, stabile Rechenoperationen zu nützen.

Loading...
00:00 / 00:00
play_arrow
close
expand_more
Loading...
replay_10
skip_previous
play_arrow
skip_next
forward_10
00:00
00:00
1.0x Geschwindigkeit
explore
Neue "Stories" entdecken
Beta
Loading
Kommentare

Da dieser Artikel älter als 18 Monate ist, ist zum jetzigen Zeitpunkt kein Kommentieren mehr möglich.

Wir laden Sie ein, bei einer aktuelleren themenrelevanten Story mitzudiskutieren: Themenübersicht.

Bei Fragen können Sie sich gern an das Community-Team per Mail an forum@krone.at wenden.



Kostenlose Spiele